4 resultados para Lactate

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Chronic hypoxia has been proposed to induce a closer coupling in human skeletal muscle between ATP utilization and production in both lowlanders (LN) acclimatizing to high altitude and high-altitude natives (HAN), linked with an improved match between pyruvate availability and its use in mitochondrial respiration. This should result in less lactate being formed during exercise in spite of the hypoxaemia. To test this hypothesis six LN (22-31 years old) were studied during 15 min warm up followed by an incremental bicycle exercise to exhaustion at sea level, during acute hypoxia and after 2 and 8 weeks at 4100 m above sea level (El Alto, Bolivia). In addition, eight HAN (26-37 years old) were studied with a similar exercise protocol at altitude. The leg net lactate release, and the arterial and muscle lactate concentrations were elevated during the exercise in LN in acute hypoxia and remained at this higher level during the acclimatization period. HAN had similar high values; however, at the moment of exhaustion their muscle lactate, ADP and IMP content and Cr/PCr ratio were higher than in LN. In conclusion, sea-level residents in the course of acclimatization to high altitude did not exhibit a reduced capacity for the active muscle to produce lactate. Thus, the lactate paradox concept could not be demonstrated. High-altitude natives from the Andes actually exhibit a higher anaerobic energy production than lowlanders after 8 weeks of acclimatization reflected by an increased muscle lactate accumulation and enhanced adenine nucleotide breakdown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] We hypothesized that reliance on lactate as a means of energy distribution is higher after a prolonged period of acclimatization (9 wk) than it is at sea level due to a higher lactate Ra and disposal from active skeletal muscle. To evaluate this hypothesis, six Danish lowlanders (25 +/- 2 yr) were studied at rest and during 20 min of bicycle exercise at 146 W at sea level (SL) and after 9 wk of acclimatization to 5,260 m (Alt). Whole body glucose Ra was similar at SL and Alt at rest and during exercise. Lactate Ra was also similar for the two conditions at rest; however, during exercise, lactate Ra was substantially lower at SL (65 micro mol. min(-1). kg body wt(-1)) than it was at Alt (150 micro mol. min(-1). kg body wt(-1)) at the same exercise intensity. During exercise, net lactate release was approximately 6-fold at Alt compared with SL, and related to this, tracer-calculated leg lactate uptake and release were both 3- or 4-fold higher at Alt compared with SL. The contribution of the two legs to glucose disposal was similar at SL and Alt; however, the contribution of the two legs to lactate Ra was significantly lower at rest and during exercise at SL (27 and 81%) than it was at Alt (45 and 123%). In conclusion, at rest and during exercise at the same absolute workload, CHO and blood glucose utilization were similar at SL and at Alt. Leg net lactate release was severalfold higher, and the contribution of leg lactate release to whole body lactate Ra was higher at Alt compared with SL. During exercise, the relative contribution of lactate oxidation to whole body CHO oxidation was substantially higher at Alt compared with SL as a result of increased uptake and subsequent oxidation of lactate by the active skeletal muscles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] 1. One to five weeks of chronic exposure to hypoxia has been shown to reduce peak blood lactate concentration compared to acute exposure to hypoxia during exercise, the high altitude 'lactate paradox'. However, we hypothesize that a sufficiently long exposure to hypoxia would result in a blood lactate and net lactate release from the active leg to an extent similar to that observed in acute hypoxia, independent of work intensity. 2. Six Danish lowlanders (25-26 years) were studied during graded incremental bicycle exercise under four conditions: at sea level breathing either ambient air (0 m normoxia) or a low-oxygen gas mixture (10 % O(2) in N(2), 0 m acute hypoxia) and after 9 weeks of acclimatization to 5260 m breathing either ambient air (5260 m chronic hypoxia) or a normoxic gas mixture (47 % O(2) in N(2), 5260 m acute normoxia). In addition, one-leg knee-extensor exercise was performed during 5260 m chronic hypoxia and 5260 m acute normoxia. 3. During incremental bicycle exercise, the arterial lactate concentrations were similar at sub-maximal work at 0 m acute hypoxia and 5260 m chronic hypoxia but higher compared to both 0 m normoxia and 5260 m acute normoxia. However, peak lactate concentration was similar under all conditions (10.0 +/- 1.3, 10.7 +/- 2.0, 10.9 +/- 2.3 and 11.0 +/- 1.0 mmol l(-1)) at 0 m normoxia, 0 m acute hypoxia, 5260 m chronic hypoxia and 5260 m acute normoxia, respectively. Despite a similar lactate concentration at sub-maximal and maximal workload, the net lactate release from the leg was lower during 0 m acute hypoxia (peak 8.4 +/- 1.6 mmol min(-1)) than at 5260 m chronic hypoxia (peak 12.8 +/- 2.2 mmol min(-1)). The same was observed for 0 m normoxia (peak 8.9 +/- 2.0 mmol min(-1)) compared to 5260 m acute normoxia (peak 12.6 +/- 3.6 mmol min(-1)). Exercise after acclimatization with a small muscle mass (one-leg knee-extensor) elicited similar lactate concentrations (peak 4.4 +/- 0.2 vs. 3.9 +/- 0.3 mmol l(-1)) and net lactate release (peak 16.4 +/- 1.8 vs. 14.3 mmol l(-1)) from the active leg at 5260 m chronic hypoxia and 5260 m acute normoxia. 4. In conclusion, in lowlanders acclimatized for 9 weeks to an altitude of 5260 m, the arterial lactate concentration was similar at 0 m acute hypoxia and 5260 m chronic hypoxia. The net lactate release from the active leg was higher at 5260 m chronic hypoxia compared to 0 m acute hypoxia, implying an enhanced lactate utilization with prolonged acclimatization to altitude. The present study clearly shows the absence of a lactate paradox in lowlanders sufficiently acclimatized to altitude.